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Although transition metatacetylene complexes are prototypes
for m-bonding in organometallic chemistty® the vibrational Ni*(C,H,)Ar,
spectroscopy of these systems has been limited to studies in B
condensed phases. However, gas-phase ion complexes can be
studied in isolation, revealing individual molecular proper#es. N
Mass spectrometry provides bond energies and reactivities of metal Co (CyHp)Ar
ion—acetylene complexéss Electronic spectroscopy has probed
excited state$’ Geometries and electronic structures have been

investigated theoreticalf.2° IR spectroscopy is a key tool in Fe'(C,H,)Ar,

organometallic chemistrd,but the low concentration of gas-phase

ions precludes conventional absorption spectroscopy. However, : :
resonance-enhanced photodissociation (IR-REPD) spectroscopy V*(C,H,)Ar, I “
using new IR lasers now allows vibrational spectra of ions to be " . "
measured in the gas phagel* This method found cyclization ; . . . ————
reactions of acetylene in |argerNC2H2)n clusterst2 We now report 2800 2000 3000 3100 3200 3300 3400
the IR spectra of mono-ligand MC;H,) complexes (M= V, Fe, .

Co, Ni), which reveal new trends in metdigand interactions. Energy (cm™)

M*(C,H,) complexes produced by laser vaporization (355 nm) Figure 1. IR-REPD spectra for M(CzH2)Ar> complexes. The acetylene
were studied in a molecular beam environment. lons were mass-frequencie¥’ at 3289 and 3374 cm are shown in blue.
selected in a reflectron time-of-flight spectrometer and excited with Al of the bands in these cation complexes are shifted to the red
a tunable IR-optical parametric oscillator (OPO) laSerhe argon from the C-H stretches in acetylene, in accord with the Dewar
tagging method was employé#lPhotoelimination of argon occurs  Chatt-Duncanson (DCD) complexation modéf As seen for
on resonance, mapping the IR absorptions for these complexes;metal carbonyls, acetylemeelectrons are donated into empty metal
the yields mirror the IR intensities. The OPO tuning range only d orbitals, while filled metald orbital electrons back-donate into
allows investigation of the €H stretching region. The results were  acetylener*-antibonding orbitals. Both of these weaken the CC
interpreted in conjunction with density functional theory (DFT) bonding and increase thecharacter of the carbon hybridization.

computation® at the B3LYP¥/6-311+G** and B3LYP/6-31H1-G- This was shown by previous condensed phase sitidiethe C=

(3df,2p) levels. C stretch (near 1974 crh, outside our IR tuning range). The same
Experimental data are limitédbut theory finds M(C;Hy) effect reduces the €H stretching frequencies.

dissociation energies to be 3@5 kcal/mol (10 506-15 700 The magnitude of the shifts of the-&1 vibrations for different

cm1).8-10 Excitation in the C-H stretching region therefore cannot  metals is intriguing. The shift is greatest for'{C;H,) and is
produce photodissociation except by multiphoton absorption, which progressively smaller for the EgCo*, and Ni* complexes. This
is inefficient. As expected, virtually no fragmentation is observed pattern is surprising, because it does not track the available
for the bare M(C;H,) complexes. Argon tagging provides a low  theoretical and experimental metal caticacetylene complexation
energy fragmentation channel with minimum perturbation of the energie$;#1° as discussed below. For FeCaot, and Nit, the
metal-ligand interactiort® Consequently, tagged species closely symmetric stretch is much less intense (Figure 1) because it only
approximate the spectra of isolated complexes.AM binding becomes IR-active via distortion of the HCC angle. FG{®:H,),
energies are 10684000 cn1,1"1®and the per-atom binding energy  however, the symmetric stretch band is more intense.
is generally less in multi-argon complexes. Weak signals are found  Theory reproduces and explains these features. The computed
for mono-argon complexes because dissociation is still inefficient ground-state €H stretching vibrations for each MC;H,) and its
for these systems. Fragmentation is greatly enhanced when twoAr-tagged complexes are quite close to the experimental values
argons are present. Figure 1 shows the IR-REPD spectratef M (Table 1). The IR oscillator strengths match the experimental
(C:HR)Ar, (M =V, Fe, Co, Ni) species in the 2963400 cnm! intensities (Figure 1). Our results are consistent with earlier
region, measured in the mass channel for the loss of one argon. computations on various states of these complékdhe argons
The IR spectrum for each complex has two bands due to the induce only small band shifts (16 cor less) vs the free ion.
asymmetric and symmetric-€H stretches of the acetylene ligand.  The larger differences in going from one metal to another separate
While the symmetric stretch is not IR-active in free acetylene, V*(C,Hy) (2A,) from the"B; group. The variation from Feto Co*
symmetry breaking activates this mode in the metal complexes. to Ni* is nearly constant (ca. 21 and 32 chior the experimental
The Ni* spectrum shows satellite bands because?’fheand?B; asymmetric and symmetric stretch, respectively).
states are nearly isoenergét{as we confirm here) and both are As noted beforé the M*(C,H,) complexes of the late transition
populated. The frequencies of these two states are almost the samenetals are bound primarily by electrostatic forces, the-\,H,
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Table 1. Computed and Experimental (£1 cm~1) Vibrational
Frequencies?

theory? experiment
M*(state) M*(C,Hy) M*(C,Ho)Ar M*(C,H,)Ar, M*(C,Ho)Ar,
V(A 3060(49) 3062(39) 3063(32) 3067
[1.724] 3093(44) 3099(41) 3095(37) 3097
Fe"(“B1) 3125(145) 3130(130) 3129(110) 3132
[1.086] 3193(44) 3198(52) 3193(42) 3181
Co"(®By) 3132(185) 3139(164) 3147(154) 3152
[1.010] 3206(36) 3213(44) 3222(43 3210
NiT(2By)° 3156(232) 3162(214) 3171(195) 3160
[0.967 3240(27) 3247(34) 3255(35) 3233
Ni*(2A,)¢ 3178(195) 3172(209) 3178(195) 3174
[0.996] 3263(23) 3259(33) 3264(34) 3244

with the metal charges, minor covalemtdonation andz-back-
bonding DCD variations evidently are responsible for the red-shifted
band trend and the small structural differences in the Fe, Co, Ni
set. VH(C,H,) differs significantly from these three.

We have demonstrated that IR spectroscopy of metation
acetylene complexes in the-® stretch region, combined with
DFT computations, provides significant structural insights. The trend
of metal charges for Fe Co", and Ni" z-complexes mirrors the
relative C-H stretch red shifts of the acetylene ligands(®@,H,)
favors the lower multiplicity 3A, state where back-donation
dominates and a three membered ring results. To our knowledge,
this is the first spectroscopic confirmation of metallacycle formation
in these systems.

aTheoretical intensities are in parentheses, and metal charges are in Acknowledgment. We thank the U.S. Department of Energy

brackets? Frequencies are at B3LYP/6-31G**, scaled by 0.960. M(CHy)
results at B3LYP/6-31+G(3df,2p), scaled by 0.964, are nearly identical.
Natural charges are given at the latter le¥elhe 2B, and?A; states lie at
nearly the same energyA; is assigned as the ground state to match the
higher measured frequencies of the more intense bands.

separations are moderately large, and the distortion of the acetylene (

is modest. Consistent with this, the red shifts from acetylene are
smaller for the F&, Co", and Nit complexes. The HCC anglés,
150-166€ in our computations of théB; states, bend sufficiently

to activate the symmetric CH stretch, but these are weak in intensity.
The Fe, Co", and Ni- complexes favor the higher multiplicity
"B; state with only small DCD involvement of the metéhland
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